Discrete biorthogonal wavelet transforms as block circulant matrices
نویسندگان
چکیده
منابع مشابه
Construction of Biorthogonal Discrete Wavelet Transforms Using Interpolatory Splines
We present a new family of biorthogonal wavelet and wavelet packet transforms for discrete periodic signals and a related library of biorthogonal periodic symmetric waveforms. The construction is based on the superconvergence property of the interpolatory polynomial splines of even degrees. The construction of the transforms is performed in a “lifting” manner that allows more efficient implemen...
متن کاملNumerical Stability of Biorthogonal Wavelet Transforms
For orthogonal wavelets, the discrete wavelet and wave packet transforms and their inverses are orthogonal operators with perfect numerical stability. For biorthogonal wavelets, numerical instabilities can occur. We derive bounds for the 2-norm and average 2-norm of these transforms, including eecient numerical estimates if the number L of decomposition levels is small, as well as growth estima...
متن کاملBiorthogonal wavelet transforms for ECG parameters estimation.
The parameters of various morphologies of ECG waveform are basic in characterizing them as normal or otherwise. The use of multiscale analysis, through biorthogonal wavelets presented in this paper, appears very promising for such a characterization. This is on account of the fact that various morphologies are excited better at different scales. From these different scales, amplitudes, duration...
متن کاملNumerical stability of biorthogonal wavelet transforms
Biorthogonal wavelets are essential tools for numerous practical applications. It is very important that wavelet transforms work numerically stable in floating point arithmetic. This paper presents new results on the worst-case analysis of roundoff errors occurring in floating point computation of periodic biorthogonal wavelet transforms, i.e. multilevel wavelet decompositions and reconstructio...
متن کاملDiscrete Affine Wavelet Transforms
In this paper we show that discrete affine wavelet transforms can provide a tool for the analysis and synthesis of standard feedforward neural networks. It is shown that wavelet frames for L2(IR) can be constructed based upon sigmoids. The spatia-spectral localization property of wavelets can be exploited in defining the topology and determining the weights of a feedforward network. Training a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1995
ISSN: 0024-3795
DOI: 10.1016/0024-3795(94)00298-r